/%;4 L 61)0}/

Determining Fault Insertion Rates For Evolving Software Systems

Allen P. Nikora
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109-8099
Allen.P.Nikora@jpl.nasa.gov

John C. Munson
Computer Science Department
University of Idaho
Moscow, ID 83844-1010
jmunson @cs.uidaho.edu

ABSTRACT

In developing a software system, we would like to be able
to estimate the way in which the fault content changes
during its development, as well as determining the loca-
tions having the highest concentration of faults. In the
phases prior to test, however, there may be very little di-
rect information regarding the number and location of
Saults. This lack of direct information requires the devel-
opment of a fault surrogate from which the number of
Saults and their location can be estimated. We develop a
Sault surrogate based on changes in relative complexity, a

1. Introduction

Over a number of years of study, we can now establish
a distinct relationship between software faults and certain
aspects of software complexity. When a software system
consisting of many distinct software modules is built for
the first time, we have little or no direct information as to
the location of faults in the code. Some modules will
have far more faults in them then do others. However, we
now know that the number of faults in a module is highly
correlated with certain software attributes that may be
measured. We can measure these attributes of the soft-
ware and have some reasonable notion as to the degree to
which the modules are fault prone [10, 14].

In the absence of information as to the specific loca-
tion of software faults, we have successfully used a de-
rived metric, the relative complexity measure, as a fault
surrogate. That is, if the relative complexity value of a
module is large, then it will likely have a large number of
faults. If, on the other hand, the relative complexity of a
module is small, then it will tend to have fewer faults. As
the software system evolves through a number of sequen-
tial builds, faults will be identified and the code will be
changed in an attempt to eliminate the identified faults.
The introduction of new code, however, is a fault prone

synthetic measure which has been successfully used as a
fault surrogate in previous work. We show that changes in
the relative complexity can be used to estimate the rates at
which faults are inserted into a system between successive
revisions. These rates can be used to continuously monitor
the total number of faults inserted into a system, the residual
Jault content, and identify those portions of a system re-
quiring the application of additional fault detection and
removal resources.

process just as was the initial code generation. Faults may
well be inserted during this evolutionary process.

Code does not always change just to fix faults that have
been isolated in it. Some changes to code during its evolu-
tion represent enhancements, design modifications or
changes in the code in response to continually evolving re-
quirements. These incremental code enhancements may
also result in the insertion of still more faults. Thus, as a
system progresses through a series of builds, the relative
complexity fault surrogate of each program module that has
been altered must also change. We will see that the rate of
change in relative complexity will serve as a good index of
the rate of fault insertion.

Some changes are rather more heroic than others. Dur-
ing these more substantive change cycles, it is quite possible
that the actual number of faults in the system will rise. We
would be very mistaken, then, to assume that software test
will monotonically reduce the number of faults in a system.
This will only be the case when the rate of fault removal
exceeds the rate of fault insertion, which in most cases is
probably true [16). The rate of fault removal is relatively
easy to measure. The rate of fault insertion is much more
tenuous. This fault insertion process is directly related to
two measures that we can take on code as it evolves, code
delta and code churn.

In this investigation we establish a methodology
whereby code can be measured from onc build to the
next, a measurement bascline,. We use this baseline to
develop an assessment of the rate of change to a system as
measured by our relative complexity fault surrogate.
From this change process we are able to derive a direct
measure of the rate of fault insertion based on changes in
the software from one build to the next. Finally we ex-
amine data from an actual system on which faults may be
traced to specific build increments to assess the predicted
rate of fault insertion with the actual.

A major objective of this study is to identify a com-
plete software system on which every version of every
module has been archived together with the faults that
have been recorded against the system as it evolved. For
our purposes, the Cassini Orbiter Command and Data
Subsystem (CDS) at JPL met our objectives. On the first
build of this system there were approximately 96K source
lines of code in approximately 750 program modules. On
the last build there were approximately 110K lines of
source code in approximately 800 program modules. As
the system progressed from the first to the last build there
were a total of 45,200 different versions of these modules.
Each module progressed through an average of about 60
evolutionary steps or versions. For the purposes of this
study, the Ada program module is a procedure or func-
tion; it is the smallest unit of the Ada language structure
that may be measured. A number of modules present in
the first build of the system were removed on subsequent
builds. Similarly, a number of modules were added.

The Cassini CDS is quite typical of the amount of
change activity that will occur in the development of a
system on the order of 100 KLOC. It is a non-trivial
measurement problem to track the system as it evolves.
Again, there are two different sets of measurement activi-
ties that must occur at once. We are interested the
changes in the source code and we are interested in the
fault reports that are being filed against each module.

2. A Measurement Baseline

Measuring an evolving software system is not an easy
task. Perhaps one of the most difficult issues relates to
the establishment of a baseline against which the evolving
systems may be compared. This problem is very similar
to that encountered by the surveying profession. To es-
tablish the topological characteristics of the land, we will
have to seek out a benchmark. This benchmark represents
an arbitrary point somewhere on the subject property.
The distance and the elevation of every other point on the
property may then be established in relation to the meas-
urement baseline. Interestingly enough, we can pick any
point on the property, establish a new baseline, and get
exactly the same topology for the property. The property
does not change. Only our perspective changes.

When measuring software evolution, we also need to
establish a measurement bascline [18, 15]. We need a fixed
point against which all others can be compared. Our meas-
urement baseline also needs to maintain the property that,
when another point is chosen, the exact same picture of
software evolution emerges, only the perspective changes.
The individual points involved in mcasuring software evo-
lution are individual builds of the system.

In our land surveying analogy, however, there are only
two attributes that we are concerned with, the height of a
point relative to the baseline and the distance of that point
from the baseline. Both attributes use the same measure-
ment scale. Software attributes are very different. The raw
measurements taken on the various attributes are all on dif-
ferent scales. The comparison of different modules within a
software system by using raw measurement data is compli-
cated by this fact. Take for example the data in Table 1.
This table provides the values for two metrics; lines of code,
LOC, and cyclomatic complexity, V(g). These measure-
ments are taken for two different builds of the system.
Based on these two metrics, it is difficult to assert that Mod-
ule A is more complex than Module B on Build 1. Cer-
tainly, LOC is less than that for module B, but V(g) is
greater. Now consider the same two modules for build 2.
Has the system, as represented by these two modules, be-
come more complex or less complex between these two
builds? The total number of lines of code has decreased by
ten, but cyclomatic complexity has increased by two.
Again, it is difficult to assert that there has been an increase
or decrease in overall complexity. In order to make such
comparisons it will be necessary to standardize the data.

Build 1 Build 2
Module A B A B
LOC 200 250 210 230
V(g) 20 15 19 18

Table 1. A Measurement Example

Standardizing metrics puts all of the metrics on the same
relative scale, with a mean of zero and a standard deviation
of one. However the standardization masks the change that
has occurred between builds. In order to place all the met-
rics on the same relative scale and to keep from losing the
effect of changes between builds, all build data is standard-
ized using the means and standard deviations for the metrics
obtained from the baseline system. This preserves trends in
the data and lets measurements from different builds be
compared.

Table 2 shows how a baseline may be established and
used to compare software in different builds. In this table,
the lines of code metrics for Modules A and B have been
copied from the corresponding row of Table 1 to Table 2.
We can see from these tables that Module A has increased
10 lines of code from Build 1 to Build 2. We can also see
that Module B has decreased by 20 lines between these two

builds. What is not apparent from this table is the relative
size of Modules A and B to other modules in the same
build. To make this difference visible each of the LOC
values is normalized by subtracting the mean value, LOC,
for each build, and dividing by the standard deviation of
LOC for that build, s,,.. This will yield the row labeled

2., in Table 2. With these normalized metric values, we

can see that Module A has not changed in LOC relative to
all other program modules. The same thing is true for
Module B from Build 1 to Build 2. Module A is of aver-
age size on both Build 1 and Build 2. If, on the other
hand, we normalize the Build 2 modules by the mean and
standard deviation of Build 1, we obtain a new row for
Table 2 labeled Base z,,.. Build 2 may now be com-
pared directly to Build 1. We can see that Module 2 is 0.4
standard deviations greater than it was on Build 1. Fur-
ther, while Module B was fully two standard deviations
above the mean LOC for Build 1, on Build 2 it has di-
minished to 1.2 standard deviations above the mean.

Build 1 Build 2
Module A B A B
LOC 200 250 210 230
Zic 0.0 2.0 0.0 2.0
Base z,, 0.0 20 0.4 1.2
LoC 200 210
Sioc 25 15

Table 2. A Baseline Example

For each raw metric in the baseline build, we may
compute a mean and a standard deviation. Denote the

vector of mean values for the baseline build as X” and

the vector of standard deviations as s”. The standardized
baseline metric values for any module j in an arbitrary
build i may be derived from raw metric values as

B -8
W, —%

B,
M=
! s

B
i

Standardizing the raw metrics makes them more trac-
table. Among other things, it permits the comparison of
metric values from one build to the next. However, stan-
dardization does not solve the main problem. There are
too many metrics collected on each module over many
builds. We have successfully used principal components
analysis for reducing the dimensionality of the problem
[15, 7]. This technique reduces a set of highly correlated
metrics to a much smaller set of uncorrelated or orthogo-
nal measures. One of the products of this technique is an
orthogonal transformation matrix T that sends the stan-
dardized scores (the matrix z) onto a reduced set of do-
main scores thusly, d =zT.

In the same manner as the baseline means and stan-
dard deviations are used to transform the raw metric of

any build relative to a baselinc build, the transformation
matrix T*? derived from the baselinc build is used in subse-
quent builds to transform standardized metric values ob-
tained from that build to the reduced set of domain metrics
as follows: d™ =z*'T?, where z”' are the standardized

metric values from build i baselined on build B..

Another artifact of the principal components analysis is
the set of eigenvalues that are generated for each of the new
principal components. Associated with each of the new
measurement domains is an eigenvalue, A . These eigen-
values are large or small varying directly with the propor-
tion of variance explained by each principal component.
We have used these eigenvalues to create a new metric
called relative complexity, p , that is the weighted sum of

the domain metrics to wit: p, =50+1027»,d, , where m
J=t

is the dimensionality of the reduced metric set [10].

As was the case for the standardized metrics and the do-
main metrics, relative complexity may be baselined as well
using the eigenvalues and the baselined domain values:

p! =Y \d]
j=l

If the raw metrics that are used to construct the relative
complexity metric are carefully chosen for their relationship
to software faults then the relative complexity metric will
vary in exactly the same manner as the fauits [13]. The
relative complexity metric in this context is a fault surro-
gate. Whereas we cannot measure the faults in a program
directly we can measure the relative complexity of the pro-
gram modules that contain the faults. Those modules hav-
ing a large relative complexity value will be found to be
those with the largest number of faults [12].

3. Software Evolution

As program modules change from one build to another,
the attributes of the changed program modules change. This
means that there are measurable changes in modules from
one build to the next. Each build is numerically and meas-
urably different from its predecessor with respect to a par-
ticular set of metrics. Thus, the system must be re-measured
whenever changes are made to it.

In order to describe the complexity of a system at each
build, it will be necessary to know which version of each of
the modules was a constituent in the program that failed.
Consider a software system composed of n modules as fol-

2 th
lows: m,,m,,m,,---,m, . Now, let m) represent the i

version of the j" module. With this nomenclature, the
first build of the system would be described by the set of
modules: <m,,m;,m},---,m, >. We can represent this
configuration in a nomenclature that will permit us to de-

scribec thc measurement process more precisely by re-
cording the supcrscripts as vector elements in the follow-

ing manner: v'=<v /v, v;,--v!>. Thus, v} in V"
represents the version number of the i module in the
n" build of the system. The cardinality of the set of ele-
ments in the vector V' is determined by the number of

program modules in the 2" build.

A natural way to capture the intermediate versions of
the software is to have the system development occur
under a configuration management system. All versions
of all modules can be reconstructed from the time the
program was placed under configuration control. That is,

the precise nature of V' can be determined from the con-
figuration management system. A natural way to capture
the intermediate measurements for each build would be to
incorporate the measurement tools within the configura-
tion management system. Just as code changes are main-
tained for each program module, so should code attribute
changes be kept by the configuration management system.
With these data, we will be able to assess the precise ef-
fect of the change from the build represented by v to

i+

v“* oreven V' to v"** or v,

The change in the relative complexity in a single mod-
ule between two builds may be measured in one of two
distinct ways. First, we may simply compute the simple
difference in the module relative complexity between
build i and build j. We will call this value the code delta
for the module m,, or 8}/ =p}/ ~pl'. The absolute
value of the code delta is a measure of code churn. In the
case of code churn, what is important is the absolute
measure of the nature that code has been modified. From
the standpoint of fault insertion, removing a lot of code is
probably as catastrophic as adding a bunch. The new
measure of code churn, %, for module m, is simply

xi.j=|8i.l pn.l_p
system is the sum of the code delta’s for a system be-
tween two builds i and j is given by A" = 28 b,

B.i
a

The total net change of the

With a suitable baseline in place, and the module sets
defined above, software evolution can be measured across
a full spectrum of software metrics. We can do this first
by comparing average metric values for the different
builds. Secondly, we can measure the change in system
complexity as measured by a selected metric, code delta,
or we can measure the total amount of change the system
has undergone between builds, code churn.

A limitation of measuring code deltas is that it doesn’t
give an indicator as to how much change the system has
undergone. If, between builds, several software modules
are removed and are replaced by modules of roughly
cquivalent complexity, the code delta for the system will
be close to zero. The overall complexity of the system,

based on the metric used to compute deltas, will not have
changed much. However, the reliability of the system could
have been severely affected by replacing the old modules
with new ones. What we need is a measure to accompany
code delta that indicates how much change has occurred.
Code churn is a measurement, calculated in a similar man-
ner to code delta, that provides this information. The net
code churn of the same system over the same builds is

Vi =Y g

When several modules are replaced between builds by
modules of roughly the same complexity, code delta will be
approximately zero but code churn will be equal to the sum
of the value of p for all of the modules, both inserted and

deleted. Both the code delta and code churn for a particular
metric are needed to assess the evolution of a system.

4. Obtaining Average Build Values

Since relative complexity has clearly been established as
a successful surrogate measure of software faults [11], it
seems reasonable to use it as the measure against which we
compare different builds. By definition, the average relative -
complexity, p , of the baseline system will be

1 &

N gp 2 =50,

where N’ is the cardinality of the set of modules on the
baseline build B. Relative complexity for the baseline build
is calculated from standardized values using the mean and
standard deviation from the baseline metrics. The relative
complexities are then scaled to have a mean of 50 and a
standard deviation of 10. For that reason, the average rela-
tive complexity for the baseline system will always be a
fixed point. Subsequent builds are standardized using the
means and standard deviations of the metrics gathered from
the baseline system to allow comparisons. The average
relative complexity for subsequent builds is given

5’ =

~|
by p* = #2 p2* , where N* is the cardinality of the set
i=l

&

of program modules in the k* build and p/* is the base-

lined relative complexity for the i" module of that set.

As code is modified over time, faults will be found and
fixed. However, new faults will be introduced into the code
as a result of the change. In fact, this fault insertion process
is directly proportional to change in the program modules
from one version to the next. Complexity will tend to in-
crease as changes are made; only rarely will it decrease.

5. Definition Of A Fault

Unfortunately there is no particular definition of just
precisely what a software fault is. In the face of this diffi-

culty it is rather hard to develop meaningful associative
models between faults and metrics. Since structural meas-
urements are made at the module level, we would like
information about faults at the same granularity.

Following the sccond definition of fault in [3, 4], we
consider a fault to be a structural imperfection in a
software system that may lead to the system’s eventually
failing. It is a physical characteristic of the system of
which the type and extent may be measured using the
same ideas used to measure the properties of more tradi-
tional physical systems. Faults are inserted into a system
by people making errors in their tasks - these may be er-
rors of commission or errors of omission.

In order to count faults, we needed to develop a
method of identification that is repeatable, consistent, and
identifies faults at the same level of granularity as our
structural measurements. Faults may be localized to a
single module — for instance, the order in which two
blocks are required to execute may be reversed. Fauits
may also span multiple modules - for instance, each mod-
ule containing a faulty include file would have those
faults. Another example would be a faulty global data
definition - each module referencing that global data item
would contain the fault associated with that data item.
Both types of faults must be taken into account.

For the Cassini CDS flight software, the failure infor-
mation was obtained from the JPL institutional problem
reporting system. Failures were recorded in this system
starting at subsystem-level integration, and continuing
through spacecraft integration and test. Failure reports
typically contain descriptions of the failure at varying
levels of detail, as well as descriptions of what was done
to correct the fault(s) that caused the failure. Detailed
information regarding the underlying faults (e.g., where
were the code changes made in each affected module) is
generally unavailable from the problem reporting system.

The Cassini CDS flight software development effort
used the Software Configuration Control System (SCCS)
to control changes to the software during its development.
When a module was created, or changed in response to a
failure report or engineering change request, the file con-
taining the module was checked into SCCS as a new in-
crement. This allowed us to track changes to the system
at the module level as it evolved. For approximately 10%
of the failure reports, we were able to identify the source
file increment in which the fault(s) associated with a par-
ticular failure report were repaired. This information was
available either in the comments inserted by the developer
into the SCCS file during check-in, or in the comments at
the beginning of a module that track its development his-
tory.

Using the information described above, we performed
the following steps to identify faults. First, for each
problem report, we searched all of the SCCS files to
identify all modules and the increment(s) of each module

for which the software was changed in response to the
problem report. Second, for each increment of each module
identified in the previous step, we assumed as a starting
point that all differences between the increment in which
repairs are implemented and the previous increment are due
solely to fault repair. This is not necessarily a valid as-
sumption - developers may be making functional enhance-
ments to the system in the same increment that fault repairs
are being made. Careful analysis of failure reports for
which there was sufficiently detailed descriptive information
served to separate areas of fault repair from other changes.
However, the level of detail required to perform this analy-
sis was not consistently available. Third, we used a differ-
ential comparator (e.g., Unix dif£) to show the differences
between the increment(s) in which the fault(s) were re-
paired, and the immediately preceding increment(s). The
results indicated the areas to be searched for faults.

After completing the last step, we still had to identify
and count the faults - the results of the differential compari-
son cannot simply be counted up to give a total number of
faults. In order to do this, we developed a fault taxonomy
[19]). This taxonomy differs from others in that it does not
seek to identify the root cause of the fault. Rather, it is .
based on the types of changes made to the software to repair
the faults associated with failure reports - in other words, it
constitutes an operational definition of a fault. Although
identifying the root causes of faults is important in improv-
ing the development process [1, 5], it is first necessary to
identify the faults. Our taxonomy allowed us to identify
faults in a consistent manner at the module level.

6. The Relationship Between Faults And Code
Changes

To determine the relationship between structural change
and the number of faults inserted, two measurement activi-
ties were performed. First, all of the versions of all of the
source code modules were measured. From these measure-
ments, code churn and code deltas were obtained for every
version of every module. The failure reports were sampled
to lead to specific faults in the code. These faults were
classified according to our taxonomy manually on a case by
case basis. We then developed regression models relating
code measures to code faults.

The Ada source code for all versions of each of these
modules was systematically reconstructed from the SCCS
code deltas. Each of these module versions was then meas-
ured by the UX-Metric analysis tool for Ada [20]. Only a
subset of metrics provided by this tool actually provide dis-
tinct sources of variation [6]). The specific metrics used are
shown in Table 3.

To establish a baseline system, all of the metric data for
the module versions that were members of the first build of
CDS were analyzed by our PCA-RCM tool. This tool is
designed to compute relative complexity values either from

a baseline system or from a system being compared to the
baseline system. In that the first build of the Cassini
CDS system was selected to be the baseline system, the
PCA-RCM tool performed a principal components analy-
sis on these data with an orthogonal varirax rotation.
The objective of this phase of the analysis is to use the
principal components technique to reduce the dimension-
ality of the metric set. As may been seen in Table 4, there
are four principal components for the 18 metrics shown in
Table 3. For convenience, we have named these principal
components Size, Structure, Style and Nesting. From
the last row in Table 4 we see that the new reduced set of
orthogonal components of the original 18 metrics account
for about 85% of the variation in the original metric set.

ments (NonEx) and the program block count (Blk). The
Style domain contains measures of attribute that are di-
rectly under a programmer’s control such as variable length
(VD) and purity ratio (P/R). The Nesting domain consist of
the single metric that is a measure of the average depth of
nesting of program modules (AveDepth).

In order to transform the raw metrics for each module
version into their corresponding relative complexity values,
the means and the standard deviations must be computed.
These are shown in Table 5. These values are used to trans-
form all raw metric values for all versions of all modules to
their baselined z score values. The last four columns of Ta-
ble 5, D1, D2, D3, and D4, contain the actual transformation
matrix that maps the metric z score values onto their or-
thogonal equivalents to obtain the orthogonal domain metric
values used in the computation of relative complexity. The

Metrics Definition h . 5 -
eigenvalues for the four domains are given in the last row of
n, Count of unique operators {2] this table.
n, Count of unique operands Metric Size Struc- Style | Nesting
N, Count of total operators ture
Stmts 0.968 0.022 -0.079 0.021
N, Count of total operands LSS 0961 | 0.025 | -0.080 | 0.004
P/R Purity ratio: ratio of Halstead’s N to total N, 0.926 0.016 0.086 0.086
program vocabulary N, 0.934 0.016 0.074 | 0.077
V(g) McCabe’s cyclomatic complexity 0.884 0.012 0.244 0.043
Depth Maximum nesting level of program blocks N, : ; ; .
AveDepth | Average nesting level of program blocks AveSpan 0.852 0.032 0.031 -0.082
LOC Number of lines of code V(g) 0.843 0.032 -0.094 -0.114
Blk | Number of blank lines n, 0.635 | -0.055 | -0.522 | -0.136
Cmt Count of comments Depth 0.617 -0.022 -0.337 -0.379
CmtWds | Total words used in all comments LOC -0.027 0.979 0.136 0.015
Stmts Count of executable statements Cmt -0.046 0.970 0.108 0.004
LSS Number of logical source statements PSS -0.043 0.961 0.149 0.019
PSS Number of physical source statements CmtWds 0.033 0.931 0.058 -0.010
NonEx Number of non-executable statements NonEx -0.053 0.928 0.076 -0.009
AveSpan | Average number of lines of code between Blk 0.263 0.898 0.048 0.005
references to each variable P/R -0.148 -0.198 -0.878 0.052
Vi Average variable name length Vi1 0.372 -0.232 -0.752 | 0.010
Table 3. Software Metrlc Definitions AveDepth | -0.000 -0.009 0.041 -0.938
% Variance | 37.956 30.315 10.454 6.009

As is typical in the principal components analysis of
metric data, the Size domain dominates the analysis. It
alone accounts for approximately 38% of the total varia-
tion in the original metric set. Not surprisingly, this do-
main contains the metrics of total statement count (Stmfs),
logical source statements (LSS), the Halstead lexical met-
ric primitives of operator and operand count, but it also
contains cyclomatic complexity (V(g)). In that we regu-
larly find cyclomatic complexity in this domain we are
forced to conclude that it is only a simple measure of size
in the same manner as statement count. The Structure
domain contains those metrics relating to the physical
structure of the program such as non-executable state-

Table 4. Software Metrics Principal Components

Table 5 contains all of the essential information needed
to obtain baselined relative complexity values for any ver-
sion of any module relative to the bascline build. Once the
baselined relative complexity data have been assembled for
all versions of all modules, it is possible to examine some
trends that have occurred during the evolution of the system.
For example, Figure 1 shows the relative complexity of the
evolving CDS system across one of its five major builds. To
compute these values, every development increment within
that build was identified. Then, for each increment, the
baselined relative complexity values of the modules in that

increment were computed. The next four builds, not
shown here, have cvolutionary patterns similar to that
shown in Figure 1. The average relative complexity of
most systems seems to bc a monotonically increasing
function.

Not all program modules received the same degree of
modification as the system evolved. Figure 2 shows the
code churn and code delta values for a module that
changed very little over its history. There were only four
relatively minor changes to this module. A more typical
change history is shown for another module in Figure 3.
The total code churn for this module is approximately 38.
Note that the net code delta for this module is close to
zero - the relative complexity of the module at the last
version is very close to its original relative complexity.
This figure clearly illustrates the conceptual differences
between the two measures of code churn and code delta.
Code churn is a monotonically increasing value over se-
quential versions.

Metric %2 58 D1 D2 D3 D4
Stmts | 11.37 | 7.79 0.10 | -002 | 026 | 005
LSS 25.18 27.08 0.13 0.00 0.04 -0.09
N. 79.59 129.08 0.13 0.02 -0.17 -0.08
2
N 68.24 115.72 0.13 0.02 -0.17 -0.09
1
1 1.32 0.54 0.00 -0.07 0.54 -0.16
2
Ave- 4.77 6.19 0.12 0.01 -0.03 0.07
Span
V(g) 1.48 1.58 0.10 -0.01 0.17 0.30
n 0.00 0.05 0.01 0.00 0.06 0.88
1
Depth | 162.05 | 51583 [-001 | 0.17 | 007 | -0.02
LOC 19.05 30.14 0.03 0.16 0.07 -0.02
Cmt 34.19 124.24 -0.01 0.17 0.09 -0.01
PSS 139.27 452.48 0.00 0.16 0.10 0.00
Cmt 16.61 20.44 0.14 0.01 -0.07 -0.05
Wds
Non 17.52 23.50 0.14 0.01 0.07 | -0.04
Ex .
Blk 108.80 | 372.11 | -001 | 0.17 0.06 | -0.02
P/R 71.36 22.84 -0.01 0.16 0.10 0.00
Vi 5.5 8.26 0.12 0.02 0.11 0.06
Ave |9.00 4.40 007 | -006 | 040 | -0.11
Depth
Eigen- 6.832 | 5.457 | 1.882 | 1.082
values

Table 5. Baseline Transformation Data

Figure 4 shows a module at the extreme end of change
history. This module has a total code churn value of close
to 140. Also, its final code delta value is about 30 indi-
cating that its net relative complexity has also increased
substantially as it evolved. Among the three modules

whose change history is illustrated by Figures 2, 3, and 4,
the latter module is the one on which we focus the most
attention. It is the one most likely to have had large num-
bers of faults inserted into it throughout its dramatic life.
Note in Figure 1 that not all increments within a build
represent the same increase in relative complexity. Nearly
one third of the total change in this version takes place
within the first 10% of the development increments. From
our understanding of the relationship between relative com-
plexity as a fault surrogate and inserted faults, we would
expect a large number of faults to have been inserted during
the first 30 increments because of the amount of change that
occurred. It is also interesting to note that the final relative
complexity of this version is rather close to the initial rela-
tive complexity, although it is clear from the measured code
churn that a significant amount of change has occurred.

1400.00 T T
1200.00 Cumulative — —""
code churmn o
1000.00
800,00 ¥ ot
800.00
f'—‘l
400.00 P Cumulative
f code delta

200,00

0.00 !in ‘—-_%./‘”b

140 %0 0

~200.00

Figure 1. Change in Relative Complexity for One
Version of CDS Flight Software

2.00

:'z T7| Cumulative]

‘w0l _] codechumn [~

140 f

1.20

100] Cumulative [|

0.80 code delta -

0.60 |

0.40 Jr- 7' Y

0% |]

1 I SO e e s SSSS——
S A B] L LUV IR IR)
RN UG A D A P

Figure 2. Change History for Stable Module

In relating the number of faults inserted in an increment
to measures of a module’s structural change, we had only a
small number of observations with which to work. There
were three difficulties that had to be dealt with. First, al-
though over 600 failure reports were written against the
Cassini CDS flight software during developmental testing
and system integration, for only about 10% of the failure
reports were we able to identify the module(s) that had been
changed, and in which increment those changes were made.
Second, once a fault had been identified, it was necessary to
trace it back to the increment in which it first occurred.

145.00
40.00
35.00 Paihd
3000 +—{ Cumulative S
125,00 code churn gt
20.00 T —— ' _[Cumulative code}l
15.00 [delta !
10.00 o =

“00 A I N

L
0.00
-{5'@ -1'5"0’ 4'5"5‘ > 1’;‘9 4“'9' 4"‘» 4"";‘ 4"9 -1‘;'\s & .P'\‘, .{\‘\Q

Figure 3. Typical Module Change History

160.00

14000 T—{ Cumulative =

12000 T—{ code churn Jr_.JF

100.00 1 =

80.00 !__r'/- Cumulative H

60.00 code delta H

4000 = -

2000 M B
000 [\ T ,

ST P SIS PPN TS

Figure 4. Change History for Frequently Changed
Module

For some source files, there were over 100 increments
that had to be manually searched. Since the SCCS files
for each delivered version were available, most faults
could be traced to their point of origin. The principal dif-
ficulty was the volume of material being examined - this
was one of the factors restricting the number of observa-
tions that could be obtained. Third, there were instances
in which the UX-Metric analyzer would not provide the
structural measurements of a module. The result was that
of the over 100 faults initially identified, there were only
35 observations in which a fault could be associated with
a particular increment of a module, and with that incre-
ment’s measures of code delta and code churn.

For each of the 35 instances of viable fault data, there
were three data points. First, we had a count of the num-
ber of faults inserted into a particular increment i of a
module rm,. Second, we had code delta values, 8§, for
each of these modules. Finally, we had code churn values,
%, derived from the code deltas.

Linear regression models were computed for code
churn and code deltas with code faults as the dependent
variable in both cases. Both models were built without
constant terms; we assumed that if no changes were made
to a module, then no new faults could be introduced. The
results of the regression between faults and code deltas
were not surprising. The squared multiple R for this
model was 0.001, about as close to zero as you can get.
This result is directly attributable to the non-linearity of

the data. Change may increase the complexity of a module,
or it may decrease a module’s complexity. Faults, on the
other hand are not primarily rclated to the direction of the
change but to its intensity. Removing code from a module
is just as likely to introduce faults as adding code to it.

The relationship between code churn and faults is dra-
matically different. The regression ANOVA for this model
are shown in Table 6. Whereas code deltas do not show a
linear relationship with faults, code churn certainly does.
The regression model is given in Table 7; the regression
statistics are reported in Table 8. Of particular interest is the
Squared Multiple R term. This has a value of 0.653. This
means, roughly, that the regression model will account for
more that 65% of the variation in the faults of the observed
modules based on the values of code churn.

Source Sum-of- | DF | Mean- F- P
Squares Square | Ratio
Regres- 331.879 1 331.879 | 62.996 | 0.000
sion
Residual 179.121 | 34 10.673 | 5.268

Table 6. Regression Analysis of Varlance

Effect

Coefficient

Std Err

t P(2-Tail)

Churn

0.576

0.073

7.937

0.000

Table 7. Regression Model

N | Multiple R

Squared multi-

ple R

Standard error
of estimate

35

0.806

0.649

2.296

Table 8. Regression Statistics

It may be the case that both the amount of change and
the direction in which the change occurred affect the num-
ber of faults inserted. The linear regression through the ori-
gin, shown in Tables 9, 10, and 11 is based on this idea.
This model, incorporating code delta and code churn, per-
forms substantially better than the model incorporating only
code churn, as measured by Squared Multiple R and Mean
Sum of Squares.

Source | Sum-of- | DF | Mean- F- P
Squares Square | Ratio
Regres- | 367.247 | 2 183.623 | 42.153 | 0.000
sion
Residual | 143.753 | 33 4.356

Table 9. Regression Analysis of Variance

We wanted to see if a non-linear relationship between
measurements of a system’s evolution and the number of
faults inserted might be more appropriate. We developed
two non-linear regression models describing the number of
faults inserted as functions of code churn and delta:

4" = b (VY. @ = by (74 ()

where g represents the number of faults inscrted
between revisions j and j+1, y’*" represents the amount
of code churn between builds j and j+1, and A
represents the code delta between revisions j and j+1.

Effect | Coefficient | Std Err t P(2-Tail)
Churn 0.647 0.071 9.172 0.000
Delta 0.201 0.071 2.849 0.002
Table 10. Regression Model
Squared multi- | Standard error
N | Multiple R ple R of estimate
35 .848 719 2.087

Table 11. Regression Statistics

Because Multiple Squared R values for linear
regressions through the origin cannot be compared with
Multiple Squared R values for the non-linear regressions,
we used Predicted Residual Sum of Squares (PRESS) to
compare the models, as was done in [9]. Models with
lower PRESS scores produce better predictions. To com-
pute PRESS, delete in turn each observation in a set of
observations and fit a model M to the remaining observa-
tions. The associated prediction at the value for the de-
leted observation is compared to the actual value of that
observation.

Table 12 gives PRESS scores for the linear regressions
through the origin and both non-linear regressions. The
four observations for which the value of code churn was
zero were excluded from the regressions, since the non-
linear regressions could not produce estimates with these
observations. The linear model incorporating only code
churn has a substantially lower PRESS score than the
corresponding non-linear model. Although the non-linear
model using both code churn code and code delta has a
lower PRESS score than the corresponding linear model,
the difference is not large enough to indicate a clear
preference between the two models. This indicates that
the relationship between measures of system evolution
and the number of faults inserted may be more
appropriately expressed as a linear rather than a non-
linear relationship.

Finally, we investigated whether the linear regression
model which uses code churn alone is an adequate predictor
at a particular significance level when compared to the
model using both code churn and code delta. We used the
R’-adequate test [8, 17] to examine the linear regression
models through the origin and determine whether the model
that depends only on code churn is an adequate predictor. A
subset of predictor variables is said to be R%-adequate at
significance level « if:

Ruw>1-(1-R%)X1+d,.), where

e R? b is the R? value for the subset of predictors
e R wn is the R? value for the full set of predictors
¢ dox = (kFyak1)/n-k-1, where
¢ k= number of predictor variables in the model
* n=number of observations
¢ F = F statistic for significance o for n,k de-
grees of frcedom
Tab]c 13 shows values of R?, k, degrees of freedom, F n1.1,
A, and R?,,, for both linear modcls through the origin. The
number of observations, n, is 35, and we specify o=.05.

Lin.Re- | R®* | DF | k | Finx1 [d(n,k)[Thresh

gressions for old for
Through signifi- signifi-
Origin cance ¢ cance (

Churn only [0.649] 34 [1| 4.139 [0.125] -

Churn, Delta]0.719] 33 | 2 | 3.295 [0.206] 0.661

Linear Models Ex- | Nonlincar Models
cluding Observa- | Excluding Observa-
Effect tions of Churn = 0 | tions of Churn =0
Churn only 186.090 205.718
Churn and 159.875 157.831
Delta

Table 12. PRESS Scores for Linear and Nonlin-
ear Regressions

Table 13 — Values of R, DOF, K, Fy n.x.1, and d,x for
Rz-adequate Test

Table 13 shows that the value of Multiple Squared R for
the regression using only code churn is 0.649. The 5% sig-
nificance threshold for the code churn and code delta model
is 0.661. This means that the regression model using only
code churn is not R? adequate when compared to the model
using both code churn and code delta. Although the amount
of change occurring between subsequent revisions appears
to be the primary factor determining the number of faults
inserted, the direction of that change also appears to be a
significant factor.

7. Summary

There is a distinct and a strong relationship between
software faults and measurable software attributes. The
most interesting result of this current endeavor is that we
also found a strong association between the fault insertion
process over the evolutionary history of a software system
and the degree of change that is taking place in each of the
program modules. We also found that the direction of the
change was significant in determining the number of faults
inserted. Some changes will have the potential of introduc-
ing very few faults while others may have a serious impact
on the number of latent faults.

In order for the measurement process to be meaning-
ful, the fault data must be very carefully collected. In this
study, the data were extracted ex post facto as a very labor
intensive effort. A well defined fault standard and fault
taxonomy must be developed and maintained as part of
the software development process. Further, all designers
and coders should be thoroughly trained in its use. A
viable standard is one that may be used to classify any
fault unambiguously. A viable fault recording process is
one in which any one person will classify a fault exactly
the same as any other person.

Finally, the whole notion of measuring the fault in-
sertion process is its ultimate value as a measure of soft-
ware process. The techniques developed in this study can
be implemented in a development organization to provide
a consistent method of measuring fault content and struc-
tural evolution across multiple projects over time. The
initial estimates of fault insertion rates can serve as a
baseline against which future projects can be compared to
determine whether progress is being made in reducing the
fault insertion rate, and to identify those development
techniques that seem to provide the greatest reduction.

Acknowledgments

The research described in this paper was carried out at
the Jet Propulsion Laboratory, California Institute of
Technology. Portions of the work were sponsored by the
National Aeronautics and Space Administration’s IV&V
Facility and the U. S. Air Force Operational Test and
Evaluation Center (AFOTEC).

References

(1] R. Chillarege, 1. Bhandari, J. Chaar, M. Halliday, D.
Moebus, B. Ray, M.-Y. Wong, “Orthogonal Defect
Classification - A Concept for In-Process Measurement”, IEEE
Transactions on Software Engineering, November, 1992, pp.
943-946.

[2] M. H. Halstead, Elements of Software Science. Elsevier,
New York, 1977.,

[31 “IEEE Standard Glossary of Software Engineering
Terminology”, IEEE Std 729-1983, Institute of Electrical and
Electronics Engineers, 1983.

[4] “IEEE Standard Dictionary of Measures to Produce
Reliable Software”, IEEE Std 982.1-1988, Institute of Electrical
and Electronics Engineers, 1989.

[5] “IEEE Standard Classification for Software Anomalies”,
IEEE Std 1044-1993, Institute of Electrical and Electronics
Engineers, 1994

[6] T. M. Khoshgoftaar and J. C. Munson , "Predicting Soft-
ware Development Errors Using Complexity Metrics," IEEE Jour-
nal on Selected Areas in Communications 8, 1990, pp. 253-261.
[7} T. M. Khoshgoftaar and J. C. Munson "A Measure of
Software System Complexity and Its Relationship to Faults,” In
Proceedings of the 1992 International Simulation Technology
Conference, The Society for Computer Simulation, San Diego,
CA, 1992, pp. 267-272.

(8] S. G. MacDonell, M. J. Shepperd, P. J. Sallis, “Metrics for
Database Systems: An Empirical Study”, Proceedings of the
Fourth International Software Metrics Symposium, November 5-7,
1997, Albuquerque, NM, pp. 99-107

[9] J. A. Morgan and G. J. Knafl, “Residual Fault Density Pre-
diction using Regression Methods”, Proceedings of the Seventh
International Symposium on Software Reliability Engineering,
White Plains, NY, October 1996, pp. 87-92.

[10] J. C. Munson and T. M. Khoshgoftaar “Regression Mod-
eling of Software Quality: An Empirical Investigation,” Journal of
Information and Software Technology, 32, 1990, pp. 105-114.

{11] J. C. Munson and T. M. Khoshgoftaar "The Relative
Software Complexity Metric: A Validation Study,” In Proceedings
of the Software Engineering 1990 Conference, Cambridge Univer-
sity Press, Cambridge, UK, 1990, pp. 89-102.

{12] J. C. Munson and T. M. Khoshgoftaar "The Detection of
Fault-Prone Programs,” IEEE Transactions on Software Engi-
neering, SE-18, No. 5, 1992, pp. 423-433.

[13] J. C. Munson, "Software Measurement: Problems and Prac-
tice," Annals of Software Engineering, J. C. Baltzer AG, Amster-
dam 1995.

[14] J. C. Munson, “Software Faults, Software Failures, and
Software Reliability Modeling”, Information and Software Tech-
nology, December, 1996.

[15] J. C. Munson and D. S. Werries, “Measuring Software Evo-
lution,” Proceedings of the 1996 IEEE International Software Met-
rics Symposium, IEEE Computer Society Press, pp. 41-51.

(16] J.C. Munson and G. A. Hall, “Estimating Test Effectiveness
with Dynamic Complexity Measurement,” Empirical Software
Engineering Journal. Feb. 1997.

[17] J. Neter, W. Wasserman, M. H. Kutner, lied Li
Regression Models, Irwin: Homewood, IL, 1983

[18] A. P. Nikora, N. F. Schneidewind, J. C. Munson, “IV&V
Issues in Achieving High Reliability and Safety in Critical Control
System Software”, Proceedings of the International Society of
Science and Applied Technology Conference, March 10-12, 1997,
Anaheim, CA, pp 25-30.

[19] A. P. Nikora, “Software System Defect Content Prediction
From Development Process And Product Characteristics”, Doctoral
Dissertation, Department of Computer Science, University of
Southern California, May, 1998.

[20) “User’s Guide for UX-Metric 4.0 for Ada”, SET
Laboratories, Mulino, OR, © SET Laboratories, 1987-1993.

